суббота, 9 февраля 2013 г.

схема симисторного переключения обмоток автотрансформатора в стабилизаторах

165<U<190 В вывод 7, горит HL8 ("+20 %");

145<U<165 В нагрузка подключена к выводу 7 (далее для краткости указаны только номера выводов, к которым подключена нагрузка), горит красный светодиод HL8 ("+20 %"), мигает HL3 ("Низкое");

U<145 В нагрузка отключена, горит красный светодиод HL3 ("Низкое");

В зависимости от величины сетевого напряжения U выводы дополнительных обмоток автотрансформатора переключаются в следующем порядке:

При отклонении сетевого напряжения за допустимые пределы автотрансформатор вместе с нагрузкой отключается симистором VS1. Светодиоды HL1 HL8 индицируют состояние стабилизатора и уровни напряжения в сети.

В процессе регулирования открывающий импульс снимается с включенного симистора в конце полупериода синусоиды сетевого напряжения. После этого программа МК выдерживает паузу 4 мс, а затем подает открывающий импульс на другой симистор. Длительность задержки между переключениями симисторов может быть увеличена изменением в начале программы (в блоке описания констант) соответствующего значения времени задержки (см. комментарии в исходном тексте программы). Увеличение этого времени до 10... 15 мс необходимо в случае, если к стабилизатору подключена индуктивная нагрузка с коэффициентом мощности меньше 0,7...0,8.

Если по прошествии 5 с напряжение в сети остается в допустимых пределах, МК выдает команду на открывание сими-стора VS1, через который автотрансформатор Т1 подключается к сети. После этого МК еще в течение 0,5 с производит контрольные замеры сетевого напряжения, а затем, в зависимости от результата измерения, открывает один из симисторов VS2 VS6, тем самым подключая нагрузку к одному из пяти отводов автотрансформатора. Гальваническая развязка симисторов с МК осуществляется тиристорными оптро-нами U1 U6.

После включения стабилизатора сетевое напряжение контролируется в течение 5 с. Если оно находится в пределах 145...275 В, мигает зеленый светодиод HL2 "Нормальное", в противном случае загораются светодиод HL3 "Низкое" или HL1 "Высокое" (в зависимости от значения сетевого напряжения). В таком состоянии стабилизатор находится до тех пор, пока напряжение в сети не войдет в заданные пределы.

Как видно из рис. 3, при изменении сетевого напряжения от 145 до 275 В длительность импульсов, соответствующих лог. 0, изменяется примерно от 0,5 до 6 мс. Измеряя длительность этих импульсов, программа МК вычисляет уровень сетевого напряжения в текущем периоде. (R4.1 сопротивление части резистора R4 от нижнего по схеме вывода до движка).

С помощью подстроечного резистора R4 нижний уровень сигнала на входе МК установлен на 0,2. ..0,3 В ниже уровня лог. 0. При комнатной температуре и стабилизированном напряжении питания уровень напряжения перехода цифрового входа КМОП микросхемы из состояния лог. 1 в состояние лог. 0 (и обратно из 0 в 1 с некоторым гистерезисом, которым в данном случае можно пренебречь ввиду его постоянного значения) остается практически постоянным.

По записанной в памяти программе МК DD1 производит измерение сетевого напряжения в каждом периоде (20 мс). С делителя R1R2 отрицательные полуволны сетевого напряжения, проходя через стабилитрон VD1, формируют на нем импульсы с амплитудой, определяемой напряжением стабилизации стабилитрона, в данном случае 10 В. С делителя R3R4, уменьшающего амплитуду полученного сигнала до ТТЛ уровня (рис. 3), эти импульсы приходят на линию 0 порта А, настроенную на ввод.

Принципиальная схема устройства изображена на рис. 2.

Примененный в стабилизаторе способ оценки амплитуды сетевого напряжения крайне прост в реализации и обеспечивает вполне достаточную для данного применения точность измерения. Однако он накладывает ряд ограничений на возможное применение устройства. Прежде всего, частота сетевого напряжения должна оставаться постоянной (50 Гц). Это условие может нарушаться, например, если энергоснабжение производится от автономного дизель-генератора. Кроме того, точность измерения уменьшается с ростом нелинейных искажений формы сетевого напряжения, возникающих при работе близко расположенных мощных потребителей с сильно выраженным индуктивным характером нагрузки.

Работает он по принципу ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора Т1 с помощью симисторных ключей Q2 Q6 под управлением микроконтроллера (МК), следящего за уровнем напряжения в сети.

От указанных недостатков свободен компенсационный стабилизатор напряжения, структурная схема которого показана на рис. 1.

Для стабилизации напряжения сети в бытовых условиях используют в основном феррорезонансные стабилизаторы. К числу их недостатков следует отнести искажение синусоидальной формы выходного напряжения (к примеру, холодильник к такому стабилизатору подключать запрещается), ограниченную мощность стабилизаторов бытового назначения (300...400 Вт) при значительных массогабаритных показателях, невозможность работы без нагрузки, узкий диапазон стабилизации и выход из строя при повышенном напряжении в сети.

Длительное отклонение сетевого напряжения более чем на 10 % от номинального значения 220 В во многих районах нашей страны, к сожалению, стало нередким явлением. При повышенном (до 240...250 В) напряжении в сети значительно сокращается срок службы осветительных приборов, увеличивается нагрев трансформаторных блоков питания и двигателей в компрессорах холодильников. Снижение сетевого напряжения ниже 160... 170 В вызывает значительное увеличение нагрузки на ключевые транзисторы в импульсных блоках питания (это может привести к их перегреву и последующему тепловому пробою), а также заклинивание двигателей в компрессорах холодильников, что тоже приводит к их перегреву и выходу из строя. Еще большие колебания напряжения у однофазных потребителей, питающихся от трехфазной сети, возникают в случае обрыва нулевого провода на участке от точки подключения потребителя к четырехпроводной сети до трансформаторной подстанции. В этом случае вследствие перекоса фаз напряжение в розетке может изменяться от нескольких десятков вольт вплоть до линейного 380 В, что неминуемо приведет к повреждению практически всей сложной бытовой техники, подключенной к розетке. Избежать неприятностей, связанных с экстремальными колебаниями напряжения в сети, поможет предлагаемый стабилизатор.

С. КОРЯКОВ, г. Шахты Ростовской обл.

СТАБИЛИЗАТОР СЕТЕВОГО НАПРЯЖЕНИЯ С МИКРОКОНТРОЛЛЕРНЫМ УПРАВЛЕНИЕМ

Каталог радиолюбительских схем. СТАБИЛИЗАТОР СЕТЕВОГО НАПРЯЖЕНИЯ С МИКРОКОНТРОЛЛЕРНЫМ УПРАВЛЕНИЕМ

Комментариев нет:

Отправить комментарий